CRYAA gene

Overview

Gene (OMIM No.)
Function of gene/protein
  • Protein: crystallin alpha A
  • A major lens component required for the correct assembly of lens intermediate filaments by forming a complex with BFSP1 and BFSP2
  • Highly organized, compact structures that contribute to the refractive index of the lens
  • Interacts with other crystallins help to maintain lens transparency
  • Functions as a molecular chaperone in its oxidized form
Clinical phenotype
(OMIM phenotype no.)
  • Cataract 9, multiple types (#604219)
Inheritance
  • Autosomal recessive
  • Autosomal dominant (more common)
Ocular features
Systemic features
Key investigations
  • Measurement of corneal diameter
  • Anterior segment OCT also helpful in patients with corneal opacities
  • B-scan USS to measure axial length to document microphthalmia and detect any posterior segment abnormalities
  • Electrophysiology
  • TORCH screen
  • MRI brain and orbit
  • Assessment with a pediatrician if suspicious of systemic involvement
Molecular diagnosisNext generation sequencing
  • Targeted gene panels (cataract)
  • Whole exome sequencing
  • Whole genome sequencing
ManagementOcular
Therapies under research
  • None at present
Further information

Jump to top


Additional information

Apart from cataract, additional ocular abnormalities such as microcornea and MAC have been reported in patients harbouring the following CRYAA variants:

  • Heterozygous p.Arg12Cys (microcornea, MAC and macrocephaly)[3]
  • Heterozygous p.Arg116Cys (microcornea and MAC)[4,5]
  • Heterozygous p.Arg116His (microcornea and/or corneal opacity)[6,7]
  • Homozygous p.Arg54Cys (microcornea)[8]

Jump to top


References

  1.  Brady JP, Garland D, Duglas-Tabor Y, Robison WG Jr, Groome A, Wawrousek EF. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci U S A. 1997;94(3):884‐889. doi:10.1073/pnas.94.3.884
  2.  Cobb BA, Petrash JM. Structural and functional changes in the alpha A-crystallin R116C mutant in hereditary cataracts. Biochemistry. 2000;39(51):15791‐15798. doi:10.1021/bi001453j
  3.  Reis LM, Tyler RC, Muheisen S, et al. Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes. Hum Genet. 2013;132(7):761-770
  4.  Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet. 1998;7(3):471‐474. doi:10.1093/hmg/7.3.471
  5.  Beby F, Commeaux C, Bozon M, Denis P, Edery P, Morlé L. New phenotype associated with an Arg116Cys mutation in the CRYAA gene: nuclear cataract, iris coloboma, and microphthalmia. Arch Ophthalmol. 2007;125(2):213-216
  6.  Hansen L, Yao W, Eiberg H, et al. Genetic heterogeneity in microcornea-cataract: five novel mutations in CRYAA, CRYGD, and GJA8. Invest Ophthalmol Vis Sci. 2007;48(9):3937‐3944. doi:10.1167/iovs.07-0013
  7.  Richter L, Flodman P, Barria von-Bischhoffshausen F, et al. Clinical variability of autosomal dominant cataract, microcornea and corneal opacity and novel mutation in the alpha A crystallin gene (CRYAA). Am J Med Genet A. 2008;146A(7):833‐842. doi:10.1002/ajmg.a.32236
  8.  Khan AO, Aldahmesh MA, Meyer B. Recessive congenital total cataract with microcornea and heterozygote carrier signs caused by a novel missense CRYAA mutation (R54C). Am J Ophthalmol. 2007;144(6):949‐952. doi:10.1016/j.ajo.2007.08.005

Jump to top

Updated on November 30, 2020
Was this article helpful?